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Abstract

Gyrokinetic particle-in-cell (PIC) simulation is an im-
portant tool for studying low-frequency (! � !ci)
plasma instabilities and the associated transport of
particles and heat in tokamaks. In spite of the e�-
ciency gained by not following ion cyclotron motion,
more e�ciency is needed in performing simulations on
a transport timescale: using 1 million particles in a
system of 64 � 128 � 32 grid cells, a 3D code took
about 100 hours on the Cray2 (using one processor)
to simulate the �i mode for 3 to 4 wave periods. In
order to run larger and longer simulations, we pursue
e�orts to create parallel gyrokinetic PIC codes.

We study parallel PIC algorithms for the BBN
TC2000 computer. We use the Parallel Fortran Pre-
processor (PFP) and Parallel C Preprocessor (PCP)
[1], which are parallel enhancements to Fortran and
C based on the e�cient split-join programming model
[1]. We report progress on using PFP in a conventional
1D PIC code. We report on studies of a parallel sort-
ing algorithm and its incorporation into parallel PIC
codes.

We also convert a 3D electrostatic gyrokinetic slab
code1 to run on the Thinking Machines CM2 com-
puter. We report on the code conversion and e�ciency
gains and contrast the e�ort with that on the BBN
TC2000.

�This work performed by LLNL under DoE contract No. W{

7405{ENG{48.
1Developed by R. D. Sydora with partial support from

W. W. Lee.

1 Goal; Methods

1.1 Goal: Simulation of Fusion Plasma

Turbulence Using PIC Codes

Particle-in-cell (PIC) codes simulate plasmas using su-
perparticles moving under self-consistent electromag-
netic �elds de�ned on a spatial grid. Simulation of tur-
bulent plasma phenonema and the associated trans-
port of energy and particles requires lots of particles
and grid cells. For example, 3D gyrokinetic simula-
tion of a physically useful section of a large tokamak
may require as many as 8� 109 particles and 8� 105

grid cells [11]. Since simulations of O(106) ions (Boltz-
mann electrons) and O(2 � 105) grid cells have taken
as long as O(100) hours on the Cray2, it is clear that
the Cray2 is not fast enough for the large problems
we want to run. The goal of this research is to exploit
parallelism to run these big problems within the 10{
20 hours of CPU time we consider practical. That is,
favorable scaling with increased problem size is what
we need.

Much of the PIC method is embarassingly parallel.
For example, once particle velocities are computed, all
particles can theoretically be pushed simultaneously.
There is already some history of success in parallel
PIC code building; see, for example, Liewer, et. al.

[2][3][4]|message passing conventional PIC codes on
MIMD machines; and J. Reynders & W. W. Lee [5]|
gyrokinetic PIC codes on the CM2 SIMD machine.

1.2 Two Methods Of Attack

We undertake two paths of approach to the goal of
simulating physically interesting fusion plasma turbu-
lence problems. Both methods have as their goal the
construction of scalable, parallel gyrokinetic PIC al-
gorithms.
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1.2.1 Method 1: BBN TC2000

The BBN TC2000 machine has been shown to be able
to compete with Cray2 speeds on some physics sim-
ulation codes [16]. As stated earlier, however, Cray2
speeds are not enough for the simulations we want to
do, so we view the TC2000 as a testbed for prepara-
tion of algorithms to run on future machines which
are bigger and faster. We use parallel programming
paradigms which we assume will be available on fu-
ture machines and perhaps portable among di�erent
types of machines. If the 126-processor TC2000 at
LLNL proves to be signi�cantly faster than the Cray2
for our particular code, then we will of course also
consider running actual physics simulations there.

1.2.2 Method 2: Thinking Machines CM2

Reynders and Lee [5] have demonstrated a 2D gyroki-
netic PIC code on the CM2 which is 10 times as fast
as their Cray2 code and probably at least 6 times as
fast as our slightly more optimized Cray2 code. This
speed is enough to do some new physics simulations
now which wouldn't be practical on the Cray2. Our
plan for the CM2 is to use a 3D slab gyrokinetic PIC
code to do some physics simulations as soon as pos-
sible. The porting of an existing Cray2 code to the
CM2 is nearly completed.

1.3 Machine horsepower comparison

The NERSC Cray2 computers have been our gyroki-
netic PIC simulation machines for some time now, and
we have invested considerable e�ort into vectorization
and development of new algorithms to optimize our
codes there [12][13][14]. The Cray2 is the base ma-
chine we compare others with. To give an idea about
the relative capabilities of the three machines we are
using, here are some descriptive numbers:

� Reference point|Cray2: 4 processors

{ 1 GByte memory

{ �2 GFLOPS peak
[based on �0.5 GFLOPS per processor]

� BBN TC2000: 63 (126) processors

{ 1 GByte memory

{ �1.26 (2.52) GFLOPS peak with 32-bit
arithmetic
[based on �20 MFLOPS per node]

{ �0.63 (1.26) GFLOPS peak with 64-bit
arithmetic
[based on �10 MFLOPS per node]

{ MIMD, shared memory (switch-access time
penalty of � 3�)

� Thinking Machines CM2: 64k processors

{ 2-8 GByte memory

{ �32 GFLOPS peak with 32- or 64-bit arith-
metic
[based on 2048 oating-point processors at
16 MFLOPS each]

{ SIMD, distributed memory

These numbers further emaphasize that the TC2000 is
a research testbed for future machines, while the CM2
is fairly big and fast in its current form.

2 Research On BBN TC2000

Our current project on the TC2000 is algorithm re-
search using the 1D PIC code ES1 [15]. The lessons
learned from this work are to be applied to a port
of the 3D gyrokinetic code from the Cray2. Our ba-
sic approach is to use the PCP/PFP extensions to
C/Fortran to modify the raw Fortran codes to run in
parallel on the TC2000.

The Parallel C Preprocessor and Parallel Fortran
Preprocessor (PCP and PFP) [1][6] are implementa-
tions of the split-join parallel programming paradigm
which are descended from SPMD model [7] and The
Force [8]. In this paradigm, a �xed-CPU-count team

of processors enters the code; all members execute the
code unless instructed otherwise (via PCP/PFP em-
bedded statements). The team has a master proces-
sor, which can be speci�cally accessed for scalar code
blocks or other special purposes. The team can be split
to do independent code blocks or to execute the same
code on independent data. Finally, and importantly,
all these operations are nestable. This paradigm is
conceptually much the same as fork-join paradigms.
In practice it is distinct from fork-join models because
it is much more e�cient, and because existing fork-
join implementations are generally not nestable.

To use PCP/PFP, one inserts special kewords and
control statements into his plain C/Fortran code.
These are preprocessed and the output is fed into the
TC2000 C/Fortran compiler. The number and vari-
ety of these extra coding constructs is limited, making
the system relatively easy to program with. To run
the codes, one speci�es the �xed number of processors
in the team which enters the code before the execution
begins.
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2.1 Easy Problem: Parallel Particle

Push In ES1

This example from ES1.PFP shows a couple of PFP
modi�cations. The doall loop replaces an ordinary
Fortran loop. The barrier statement forces each pro-
cessor in the team to wait there they all arrive at that
point.

doall i=1,nparticles

x(i) = x(i) + vx(i)

if (x(i) .lt. 0.0) x(i) = x(i) + xn

if (x(i) .ge. xn) x(i) = x(i) - xn

enddoall

barrier

This loop shows one of the embarassingly parallel
parts of a PIC code. The x array stores the positions of
all the particles; the vx array stores their x-velocities.
Having computed all the elements of vx, there is no
reason why every iteration of this loop over the el-
ements of x and vx cannot be done simultaneously.
This, the \push" part of the ES1 PIC algorithm, is
easy to parallelize. The di�cult parts are (1) the ac-
cumulation of scalar charge density onto the spatial
grid on which the �elds are de�ned, (2) the computa-
tion of the forces at the particle positions, and (3) the
FFT algorithm used to solve the �eld equations. An
experimental method for parallelizing (1) is detailed
in the remaining sections on TC2000 research.

2.2 Hard Problem: Parallel Charge

Accumulation In ES1

The accumulation of scalar charge density in ES1 pro-
ceeds as follows: The spatial domain of the simulation
is mapped onto a 1D grid. The charge density is stored
in an array rho having one element for each cell in the
grid. To do the charge accumulation, each particle's
position is examined and the particle contributes a
weighted amount to each of its nearest neighboring
grid points in the rho array:

do i=1,nparticles

j = x(i)

drho = qdx*(x(i) - j)

rho(j) = rho(j) - drho+qdx

rho(j+1) = rho(j+1) + drho

enddo

There is clearly a data dependency in this charge ac-
cumulation loop, since di�erent loop iterates may try
to grab and update the same element of rho. Simply
changing do to doall would not give correct answers.
However, because the nearest-grid-point interpola-

tion scheme a�ects only two rho elements at a time,
a parallel update of every other cell would be legal if
there were some way to select particles whose posi-
tions were located in every other cell. If the x array

were sorted, particles could be accumulated from ev-
ery other cell in a deterministic fasion. Particle sorting
has been used for vectorizing PIC codes [9]. On the
TC2000, it makes sense to use a parallel sort. A de-
scription of a parallel sort we have implemented on
the TC2000 follows.

2.2.1 Parallel Quicksort Using Pcp

The Quicksort sorting algorithm [10] is elegant and
e�cient for many kinds of data. The basic idea is to
select a pivot element from the array to be sorted and
then divide the array into two segments, one of which
contains only elements less than the pivot value and
the other of which contains only elements greater than
the pivot value. Then this procedure is repeated on
each of the two segments, and so on until the array is
sorted. Figure 1 illustrates the procedure.

extract pivot element & store,
leaving a "hole" 

compare elements with pivot; shuffle until...

all >= pivot

---repeat---

all < pivot

Figure 1: Flow of Quicksort algorithm.

The potential parallelism in this algorithm is ap-
parent: all of the disconnected segments at any stage
can be sorted simultaneously. We have written a PCP
routine to do a parallel Quicksort. The basic program
ow is as follows:

1. each array-division is done by scalar processing
(by the team master processor)

2. after division, split the team and give half to each
subteam

3. do this recursively to fully sort the array:
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The following code segment is the heart of the algo-
rithm:

/* The array to be sorted is a global array. It is

not explicitly referenced in this routine */

void sort(LeftElement, RightElement)

int LeftElement, RightElement;

{

int MidElement;

/* Divide the current array section about a pivot: */

MidElement = DivideOrSort(LeftElement,RightElement);

barrier;

MidElement = TeamMidElement;

/* If sort is not finished yet: */

if (MidElement != -1)

{

split

{

/* Give one part to one subteam: */

if (MidElement - LeftElement > 1)

sort(LeftElement,MidElement-1);

}

and

{

/* Give other part to the other subteam: */

if (RightElement - MidElement > 1)

sort(MidElement+1,RightElement);

}

}

}

A timing study of this algorithm is shown in Fig-
ure 2. The data to be sorted was generated by putting
random uctuations on ordered data; this was de-
signed to mimic particle-position data arrays which
are nearly sorted and uniformly distributed into grid-
cell domains, as is the case in the physics simulations
of interest to us. The CPU time for sorting a �xed-size
array scales like 1=

p
Nprocessors.

2.2.2 Use Of Parallel Quicksort For Charge

Accumulation In ES1

To use the parallel Quicksort routine to parallelize the
charge accumulation in ES1, we have installed extra
coding to:

1. maintain an integer array of particle labels which
is the only array in the main code whose elements
are actually shu�ed in the sort

2. call the (PCP) parallel sort routine from the
ES1.PFP

3. accumulate in parallel the charge density contri-
butions from all the particles in even-numbered
grid-cells, then do the same for the particles in
odd-numbered grid cells

Quicksort Time Versus CPU Count

100000 Elements
200000 Elements
300000 Elements
400000 Elements

Sort Time (sec)

Nprocessors0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 10.00 20.00 30.00

Figure 2: TC2000 Timings for the parallel Quicksort
algorithm for various array sizes.

It is important to note that the particle positions need
not be fully sorted, since we only need to know which
grid cell each particle belongs to. Sorting the parti-
cles within the cells is unnecessary. The algorithm we
constructed takes this into account by �rst determin-
ing the cell containing each particle and storing these
numbers in an integer array, which is then sorted. We
have generalized this procedure to work for 2D and
3D simulations as well.
Figure 3 shows TC2000 timings for the charge accu-

mulation part of ES1.PFP using two di�erent meth-
ods. One method is simply to put locks around
the charge density array accesses in the accumulation
loop:

shared lock rholock

...

doall i=1,nparticles

j = x(i)

drho = qdx*(x(i) - j)

lock(rholock)

rho(j) = rho(j) - drho+qdx

rho(j+1) = rho(j+1) + drho

lock(rholock)

enddoall

This prohibits simultaneous updates of more than one
element of rho, but allows parallel computation of val-
ues of the increment drho for many particles. This
method is actually the best method for small simula-
tions and for small numbers of processors, but Figure 3
shows that it becomes less e�cient as the number of
processors increases (presumably because of buttery
switch contention in the TC2000, though this hasn't
been proved yet). The second method for charge accu-
mulation is the particle-sorting scheme described ear-
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lier. Figure 3 shows that although this method starts
out with lots of overhead computation relative to the
other at low CPU numbers, it improves dramatically
with increased CPU numbers, and eventually over-
takes the lock method for problems as large as the
one pictured.

ES1.PFP Charge Accum. Timings

SORT
LOCK

Charge accum. time (sec)

Nprocessors2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

0.00 20.00 40.00

Figure 3: TC2000 timings for the charge accumulation
part of ES1.PFP using the simple lock method and
using the parallel Quicksort algorithm to sort the par-
ticles into grid cells then accumulate charge density
contributions in parallel. This simulation had 128K
particles and 2K grid cells

2.3 Remaining Problem: Data Local-

ization And Caching

So far we have paid no attention at all to the possibly
very important issues of data locality and caching on
the TC2000; all of the particle arrays and grid arrays
are simply stored in plain shared interleaved memory
and directly accessed through whatever switch path is
necessary. If the operations in the parallel sort-based
charge accumulation, for example, could be performed
with cached on-board memory references, an overall
speed improvement by as much as a factor of ten might
be achieved. Indeed, unless this type of further im-
provement in this part of ES1.PFP is successful, we
haven't gained much for all the contortions necessary
to implement the parallel charge accumulation. (Com-
pare absolute times for high-CPU-count runs in Fig-
ure 3.) The parallel accumulation (and correspond-
ing force computation) algorithms result in organized
data access patterns which we hope can be more easily

mapped onto the most e�cient local cached memory
accesses on the TC2000. This is the next stage of our
research on this machine, which is now underway in
tandem with our beginning to port the 3D gyrokinetic
code using the ES1 port as a template.

3 Research On CM2

Our current project on the Thinking Machines CM2
is porting a 3D gyrokinetic code of Sydora et.al. from
Cray2; this code is an electrostatic slab code with adi-
abatic electrons. Our basic approach is to use CM
Fortran, which is based largely on Fortran 90 syntax.
To use the CM2 e�ciently, one must insure that

data arrays are stored and processed on the Connec-
tion Machine rather than the front end machine. To do
this, one generally must remove all references to spe-
ci�c array elements and replace loops over elements
with Fortran 90 syntax. As an example, consider part
of the coding to enforce periodic particle boundary
conditions on the gyrokinetic simulation particles:

do i=1,nparticles

if (x(i) .lt. ancxl) x(i) = x(i) + boundx

if (x(i) .gt. ancxr) x(i) = x(i) - boundx

enddo

Here x is an array of size nparticles which stores x-
positions of the particles; ancxl, ancxr, and boundx
are constants related to x-boundaries of the simulation
box. In CM Fortran, the explicit loop over particles
is eliminated and the if-tests are done via the where
syntax:

where (x .lt. ancxl) x = x + boundx

where (x .gt. ancxr) x = x - boundx

Here the scalars ancxl, ancxr, and boundx are broad-
cast to all nodes on the CM2 and the if-tests and as-
signments of all elements of the array x occur simul-
taneously.
As was the case with ES1 on the TC2000, the

particle-push part of the algorithm is embarassingly
parallel and easy to make run in parallel on the CM2.
The charge accumulation likewise is more di�cult in
theory, but in practice is handled easily using high-
level gather/scatter library functions available on the
CM2. The availability of library functions to perform
this commonly-needed task makes porting PIC codes
to the CM2 much easier than porting to the TC2000.
There are also e�cient library routines available to

perform 3D complex-to-complex parallel FFT's on the
CM2. Here again, the availability of this library func-
tion greatly helps in porting PIC codes (and other
codes requiring FFT's) to the CM2. (No library FFT
routines of any kind are available on the TC2000).
The charge accumulation, force calculation, parti-

cle push, and �eld-equation solve (using FFT's) for
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the 3D gyrokinetic code now run in parallel on the
CM2. The FFT's were the most recent modi�cation
(previously, they were done by scalar processing on the
CM2's front end). Timings for the code with parallel
FFT's are not yet completed; Figure 4 timings are for
scalar (front-end) FFT's. Notice that the CM2 uti-
lization (ratio of CM2 time to elapsed execution time)
was about 30 to 50% at that stage of conversion.

CM2 Timings (16K Processors)

Elapsed Time
CM2 Time

Code Time (arb. units)

3Nparticles x 100.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0.00 10.00 20.00 30.00

Figure 4: CM2 timings for the 3D slab gyrokinetic
code with an 8�8�8 �eld grid using 16K-processors.
This is before the implementation of the parallel FFT
routines.

4 Summary

Having done some studies of sticky PIC parallelization
issues using ES1.PFP on the TC2000, we are ready to
re�ne the memory managment of that code to better
capitalize on the gains made by parallelization. The
results of the studies, meanwhile, will be applied to
porting the 3D code to the TC2000. Also, we will
investigate parallel FFT methods to �nish paralleliz-
ing the �eld-solve part of ES1.PFP (which is only a
few percent of the total execution time and a reason-
able choice for the part to leave for last). We are now
working on reconstructing our Cray2 diagnostics and
graphics capabilities in the CM2 port of the 3D code
in preparation for physics simulations.
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